Simultaneously Toughening and Strengthening Soy Protein Isolate-Based Composites via Carboxymethylated Chitosan and Halloysite Nanotube Hybridization

نویسندگان

  • Xiaorong Liu
  • Haijiao Kang
  • Zhong Wang
  • Wei Zhang
  • Jianzhang Li
  • Shifeng Zhang
چکیده

Chemical cross-linking modification can significantly enhance the tensile strength (TS) of soy protein isolate (SPI)-based composites, but usually at the cost of a reduction in the elongation at break (EB). In this study, eco-friendly and high-potential hybrid SPI-based nanocomposites with improved TS were fabricated without compromising the reduction of EB. The hybrid of carboxymethylated chitosan (CMCS) and halloysite nanotubes (HNTs) as the enhancement center was added to the SPI and 1,2,3-propanetriol-diglycidyl-ether (PTGE) solution. The chemical structure, crystallinity, micromorphology, and opacity properties of the obtained SPI/PTGE/HNTs/CMCS film was analyzed by the attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and UV-Vis spectroscopy. The results indicated that HNTs were uniformly dispersed in the SPI matrix without crystal structure damages. Compared to the SPI/PTGE film, the TS and EB of the SPI/PTGE/HNTs/CMCS film were increased by 57.14% and 27.34%, reaching 8.47 MPa and 132.12%, respectively. The synergy of HNTs and CMCS via electrostatic interactions also improved the water resistance of the SPI/PTGE/HNTs/CMCS film. These films may have considerable potential in the field of sustainable and environmentally friendly packaging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clay nanotube-biopolymer composite scaffolds for tissue engineering.

Porous biopolymer hydrogels doped at 3-6 wt% with 50 nm diameter/0.8 μm long natural clay nanotubes were produced without any cross-linkers using the freeze-drying method. The enhancement of mechanical strength (doubled pick load), higher water uptake and thermal properties in chitosan-gelatine-agarose hydrogels doped with halloysite was demonstrated. SEM and AFM imaging has shown the even dist...

متن کامل

Bioavailability Estimation of Alginate/Chitosan Beads using a Simulated Human Intestinal System

Plant polyphenol compounds have been considered nutritionally important recently. However, achieving successful delivery of flavonoids and phytoestrogens via the oral route is particularly difficult, due to the formiable enzymatic and transport barriers in the gastrointestinal tract. Polymer-based delivery systems that trap molecules of interest within networks have been develpoed extensively f...

متن کامل

Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites

The excellent mechanical properties of carbon nanotubes (CNTS) are driving research into the creation of new strong, tough nanocomposite systems. Here, the first evidence of toughening mechanisms operating in carbon-nanotube-reinforced ceramic composites is presented. A highly ordered array of parallel multiwall CNTs in an alumina matrix was fabricated. Nanoindentation introduced controlled cra...

متن کامل

Preparation and Characterization of Pullulan-Soy Protein Concentrate Biocomposite Film

The non-biodegradable nature of plastic packaging has brought about an attention in bio-basedpackaging materials. Edible composite films were prepared using soy protein concentrate (SPC) and pullulan(PUL) biopolymer at five different ratio (100:0; 70:30; 50:50; 30:70 and 0:100) with glycerol as plasticizer bycasting-evaporation method. The thickness, mechanical properties, water vapor permeabil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017